
↑ Jump to Table of Contents→ Pop Out Sidebar

Chapter 9: Paths
Overview . Previous . Next . Elements . Attributes . Properties

Contents

9.1. Introduction1.
9.2. The ‘path’ element2.
9.3. Path data

9.3.1. General information about path data1.
9.3.2. Specifying path data: the ‘d’ property2.
9.3.3. The "moveto" commands3.
9.3.4. The "closepath" command

9.3.4.1. Segment-completing close path operation1.
4.

9.3.5. The "lineto" commands5.
9.3.6. The cubic Bézier curve commands6.
9.3.7. The quadratic Bézier curve commands7.
9.3.8. The elliptical arc curve commands8.
9.3.9. The grammar for path data9.

3.

9.4. Path directionality4.
9.5. Implementation notes

9.5.1. Out-of-range elliptical arc parameters1.
9.5.2. Reflected control points2.
9.5.3. Zero-length path segments3.
9.5.4. Error handling in path data4.

5.

9.6. Distance along a path
9.6.1. The ‘pathLength’ attribute1.

6.

9.7. DOM interfaces
9.7.1. Interface SVGPathElement1.

7.

1.

9.1. Introduction

A path represents the outline of a shape which can be filled or stroked. A
path can also be used as a clipping path, to describe animation, or position
text. A path can be used for more than one of these functions at the same
time. (See Filling, Stroking and Paint Servers, Clipping and Masking,
Animation ('animateMotion'), and Text on a Path.)

A path is described using the concept of a current point. In an analogy with
drawing on paper, the current point can be thought of as the location of the
pen. The position of the pen can be changed, and the outline of a shape (open
or closed) can be traced by dragging the pen in either straight lines or
curves.

Paths represent the geometry of the outline of an object, defined in terms of

moveto (set a new current point), lineto (draw a straight line), curveto (draw
a curve using a cubic Bézier), arc (elliptical or circular arc) and closepath
(close the current shape by connecting to the last moveto) commands.
Compound paths (i.e., a path with multiple subpaths) are possible to allow
effects such as "donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG
paths. Various implementation notes for SVG paths can be found in ‘path’
element implementation Notes.

A path is defined in SVG using the ‘path’ element.

The basic shapes are all described in terms of what their equivalent path is,
which is what their shape is as a path. (The equivalent path of a ‘path’
element is simply the path itself.) In order to define the basic shapes as
equivalent paths, a segment-completing close path operation is defined,
which cannot currently be represented in the basic path syntax.

9.2. The ‘path’ element

‘path’

Categories:
Graphics element, renderable element, shape element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements
paint server elements

clipPath, marker, mask, script, style
Attributes:

aria attributes
conditional processing attributes
core attributes
global event attributes
document element event attributes
graphical event attributes
presentation attributes
‘pathLength’

Geometry properties:
d

DOM Interfaces:
SVGPathElement

The outline of a shape for a ‘path’ element is specified using the d property.
See Path data below.

9.3. Path data

9.3.1. General information about path data

A path is defined by including a ‘path’ element on which the d property
specifies the path data. The path data contains the moveto, lineto, curveto
(both cubic and quadratic Béziers), arc and closepath instructions.

Example triangle01 specifies a path in the shape of a triangle. (The M
indicates a moveto, the Ls indicate linetos, and the z indicates a closepath).

<?xml version="1.0" standalone="no"?>
<svg width="4cm" height="4cm" viewBox="0 0 400 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <title>Example triangle01- simple example of a 'path'</title>
 <desc>A path that draws a triangle</desc>
 <rect x="1" y="1" width="398" height="398"
 fill="none" stroke="blue" />
 <path d="M 100 100 L 300 100 L 200 300 z"
 fill="red" stroke="blue" stroke-width="3" />
</svg>

Example triangle01

View this example as SVG (SVG-enabled browsers only)

Path data can contain newline characters and thus can be broken up into
multiple lines to improve readability. Newlines inside attributes in markup
will be normalized to space characters while parsing.

The syntax of path data is concise in order to allow for minimal file size and
efficient downloads, since many SVG files will be dominated by their path
data. Some of the ways that SVG attempts to minimize the size of path data
are as follows:

All instructions are expressed as one character (e.g., a moveto is
expressed as an M).
Superfluous white space and separators (such as commas) may be
eliminated; for instance, the following contains unnecessary spaces:

M 100 100 L 200 200

It may be expressed more compactly as:
M100 100L200 200

A command letter may be eliminated if an identical command letter
would otherwise precede it; for instance, the following contains an
unnecessary second "L" command:

M 100 200 L 200 100 L -100 -200

It may be expressed more compactly as:

M 100 200 L 200 100 -100 -200

For most commands there are absolute and relative versions available
(uppercase means absolute coordinates, lowercase means relative
coordinates).
Alternate forms of lineto are available to optimize the special cases of
horizontal and vertical lines (absolute and relative).
Alternate forms of curve are available to optimize the special cases
where some of the control points on the current segment can be
determined automatically from the control points on the previous
segment.

The path data syntax is a prefix notation (i.e., commands followed by
parameters). The only allowable decimal point is a Unicode U+0046 FULL
STOP (".") character (also referred to in Unicode as PERIOD, dot and decimal
point) and no other delimiter characters are allowed [UNICODE]. (For
example, the following is an invalid numeric value in a path data stream:
"13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values are relative
to the current point at the start of the command.

In the tables below, the following notation is used to describe the syntax of a
given path command:

(): grouping of parameters
+: 1 or more of the given parameter(s) is required

In the description of the path commands, cpx and cpy represent the
coordinates of the current point.

9.3.2. Specifying path data: the ‘d’ property

Name: d
Value: none | <string>
Initial: none

Applies to: ‘path’
Inherited: no

Percentages: N/A
Media: visual

Computed value: as specified
Animatable: yes

The d property is used to specify the shape of a ‘path’ element.

The value none indicates that there is no path data for the element. For
‘path’ elements, this means that the element does not render or contribute to
the bounding box of ancestor container elements.

A path is made up of multiple segments, and every command, either explicit

or implicit, other than moveto or closepath, defines one path segment.

All coordinates and lengths specified within path data must be treated as
being in user units in the current user coordinate system.

The <string> value specifies a shape using a path data string. The contents
of the <string> value must match the svg-path EBNF grammar defined
below, and errors within the string are handled according to the rules in the
Path Data Error Handling section. If the path data string contains no valid
commands, then the behavior is the same as the none value.

For animation, two d property values can only be interpolated smoothly when
the path data strings contain have the same structure, (i.e. exactly the same
number and types of path data commands which are in the same order). If an
animation is specified and the lists of path data commands do not have the
same structure, then the values must be interpolated using the discrete
animation type.

If the list of path data commands have the same structure, then each
parameter to each path data command must be interpolated separately as
real numbers. Flags and booleans must be interpolated as fractions between
zero and one, with any non-zero value considered to be a value of one/true.

Resolved that "d will become a presentation attribute (no name change) with
path data string as value" at London Editor's Meeting.

The following sections list the commands that canbe used in path data
strings. Those that draw straight line segments include the lineto commands
(L, l, H, h, V and v) and the close path commands (Z and z). These three
groups of commands draw curves:

Cubic Bézier commands (C, c, S and s). A cubic Bézier segment is
defined by a start point, an end point, and two control points.
Quadratic Bézier commands (Q, q, T and t). A quadratic Bézier segment
is defined by a start point, an end point, and one control point.
Elliptical arc commands (A and a). An elliptical arc segment draws a
segment of an ellipse.

9.3.3. The "moveto" commands

The "moveto" commands (M or m) must establish a new initial point and a
new current point. The effect is as if the "pen" were lifted and moved to a
new location. A path data segment (if there is one) must begin with a
"moveto" command. Subsequent "moveto" commands (i.e., when the
"moveto" is not the first command) represent the start of a new subpath:

Command Name Parameters Description

M
(absolute)
m
(relative)

moveto (x y)+

Start a new sub-path at the given (x,y)
coordinates. M (uppercase) indicates that
absolute coordinates will follow; m
(lowercase) indicates that relative

coordinates will follow. If a moveto is
followed by multiple pairs of coordinates,
the subsequent pairs are treated as implicit
lineto commands. Hence, implicit lineto
commands will be relative if the moveto is
relative, and absolute if the moveto is
absolute. If a relative moveto (m) appears
as the first element of the path, then it is
treated as a pair of absolute coordinates. In
this case, subsequent pairs of coordinates
are treated as relative even though the
initial moveto is interpreted as an absolute
moveto.

When a relative m command is used, the position moved to is (cpx + x, cpy +
y).

9.3.4. The "closepath" command

The "closepath" (Z or z) ends the current subpath by connecting it back to its
initial point. An automatic straight line is drawn from the current point to the
initial point of the current subpath. This path segment may be of zero length.

If a "closepath" is followed immediately by a "moveto", then the "moveto"
identifies the start point of the next subpath. If a "closepath" is followed
immediately by any other command, then the next subpath starts at the same
initial point as the current subpath.

When a subpath ends in a "closepath," it differs in behavior from what
happens when "manually" closing a subpath via a "lineto" command in how
‘stroke-linejoin’ and ‘stroke-linecap’ are implemented. With "closepath", the
end of the final segment of the subpath is "joined" with the start of the initial
segment of the subpath using the current value of ‘stroke-linejoin’. If you
instead "manually" close the subpath via a "lineto" command, the start of the
first segment and the end of the last segment are not joined but instead are
each capped using the current value of ‘stroke-linecap’. At the end of the
command, the new current point is set to the initial point of the current
subpath.

Command Name Parameters Description

Z or
z closepath (none)

Close the current subpath by connecting
it back to the current subpath's initial
point (see prose above). Since the Z and z
commands take no parameters, they have
an identical effect.

A closed subpath must be closed with a "closepath" command, this "joins" the
first and last path segments. Any other path is an open subpath.

A closed subpath differs in behavior from an open subpath whose final

coordinate is the initial point of the subpath. The first and last path segments
of an open subpath will not be joined, even when the final coordinate of the
last path segment is the initial point of the subpath. This will result in the
first and last path segments being capped using the current value of stroke-
linecap rather than joined using the current value of stroke-linejoin.

If a "closepath" is followed immediately by a "moveto", then the "moveto"
identifies the start point of the next subpath. If a "closepath" is followed
immediately by any other command, then the next subpath must start at the
same initial point as the current subpath.

9.3.4.1. Segment-completing close path operation

In order to represent the basic shapes as equivalent paths, there must be a
way to close curved shapes without introducing an additional straight-line
segment (even if that segment would have zero length). For that purpose, a
segment-completing close path operation is defined here.

A segment-completing close path operation combines with the previous path
command, with two effects:

It ensures that the final coordinate point of the previous command
exactly matches the initial point of the current subpath.
It joins the final and initial points of the subpath, making it a closed
subpath.

Segment-completing close path operations are not currently supported as a
command in the path data syntax. The working group has proposed such a
syntax for future versions of the specification.

9.3.5. The "lineto" commands

The various "lineto" commands draw straight lines from the current point to
a new point:

Command Name Parameters Description

L
(absolute)
l (relative)

lineto (x y)+

Draw a line from the current point to the
given (x,y) coordinate which becomes
the new current point. L (uppercase)
indicates that absolute coordinates will
follow; l (lowercase) indicates that
relative coordinates will follow. A
number of coordinates pairs may be
specified to draw a polyline. At the end
of the command, the new current point
is set to the final set of coordinates
provided.

H
(absolute)
h (relative)

horizontal
lineto

x+
Draws a horizontal line from the current
point. H (uppercase) indicates that
absolute coordinates will follow; h

(lowercase) indicates that relative
coordinates will follow. Multiple x values
can be provided (although usually this
doesn't make sense). An H or h
command is equivalent to an L or l
command with 0 specified for the y
coordinate. At the end of the command,
the new current point is taken from the
final coordinate value.

V
(absolute)
v (relative)

vertical
lineto

y+

Draws a vertical line from the current
point. V (uppercase) indicates that
absolute coordinates will follow; v
(lowercase) indicates that relative
coordinates will follow. Multiple y values
can be provided (although usually this
doesn't make sense). A V or v command
is equivalent to an L or l command with
0 specified for the x coordinate. At the
end of the command, the new current
point is taken from the final coordinate
value.

When a relative l command is used, the end point of the line is (cpx + x, cpy
+ y).

When a relative h command is used, the end point of the line is (cpx + x,
cpy). This means that an h command with a positive x value draws a
horizontal line in the direction of the positive x-axis.

When a relative v command is used, the end point of the line is (cpx, cpy +
y).

9.3.6. The cubic Bézier curve commands

The cubic Bézier commands are as follows:

Command Name Parameters Description

C
(absolute)
c (relative)

curveto
(x1 y1 x2 y2
x y)+

Draws a cubic Bézier curve from
the current point to (x,y) using
(x1,y1) as the control point at
the beginning of the curve and
(x2,y2) as the control point at
the end of the curve. C
(uppercase) indicates that
absolute coordinates will follow;
c (lowercase) indicates that
relative coordinates will follow.
Multiple sets of coordinates may
be specified to draw a
polybézier. At the end of the

command, the new current point
becomes the final (x,y)
coordinate pair used in the
polybézier.

S
(absolute)
s (relative)

shorthand/smooth
curveto

(x2 y2 x y)+

Draws a cubic Bézier curve from
the current point to (x,y). The
first control point is assumed to
be the reflection of the second
control point on the previous
command relative to the current
point. (If there is no previous
command or if the previous
command was not an C, c, S or s,
assume the first control point is
coincident with the current
point.) (x2,y2) is the second
control point (i.e., the control
point at the end of the curve). S
(uppercase) indicates that
absolute coordinates will follow;
s (lowercase) indicates that
relative coordinates will follow.
Multiple sets of coordinates may
be specified to draw a
polybézier. At the end of the
command, the new current point
becomes the final (x,y)
coordinate pair used in the
polybézier.

When a relative c or s command is used, each of the relative coordinate pairs
is computed as for those in an m command. For example, the final control
point of the curve of both commands is (cpx + x, cpy + y).

Example cubic01 shows some simple uses of cubic Bézier commands within a
path. The example uses an internal CSS style sheet to assign styling
properties. Note that the control point for the "S" command is computed
automatically as the reflection of the control point for the previous "C"
command relative to the start point of the "S" command.

<?xml version="1.0" standalone="no"?>
<svg width="5cm" height="4cm" viewBox="0 0 500 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <title>Example cubic01- cubic Bézier commands in path data</title>
 <desc>Picture showing a simple example of path data
 using both a "C" and an "S" command,
 along with annotations showing the control points
 and end points</desc>
 <style type="text/css"><![CDATA[
 .Border { fill:none; stroke:blue; stroke-width:1 }
 .Connect { fill:none; stroke:#888888; stroke-width:2 }
 .SamplePath { fill:none; stroke:red; stroke-width:5 }
 .EndPoint { fill:none; stroke:#888888; stroke-width:2 }

 .CtlPoint { fill:#888888; stroke:none }
 .AutoCtlPoint { fill:none; stroke:blue; stroke-width:4 }
 .Label { font-size:22; font-family:Verdana }
]]></style>

 <rect class="Border" x="1" y="1" width="498" height="398" />

 <polyline class="Connect" points="100,200 100,100" />
 <polyline class="Connect" points="250,100 250,200" />
 <polyline class="Connect" points="250,200 250,300" />
 <polyline class="Connect" points="400,300 400,200" />
 <path class="SamplePath" d="M100,200 C100,100 250,100 250,200
 S400,300 400,200" />
 <circle class="EndPoint" cx="100" cy="200" r="10" />
 <circle class="EndPoint" cx="250" cy="200" r="10" />
 <circle class="EndPoint" cx="400" cy="200" r="10" />
 <circle class="CtlPoint" cx="100" cy="100" r="10" />
 <circle class="CtlPoint" cx="250" cy="100" r="10" />
 <circle class="CtlPoint" cx="400" cy="300" r="10" />
 <circle class="AutoCtlPoint" cx="250" cy="300" r="9" />
 <text class="Label" x="25" y="70">M100,200 C100,100 250,100 250,200</text>
 <text class="Label" x="325" y="350"
 style="text-anchor:middle">S400,300 400,200</text>
</svg>

Example cubic01

View this example as SVG (SVG-enabled browsers only)

The following picture shows some how cubic Bézier curves change their
shape depending on the position of the control points. The first five examples
illustrate a single cubic Bézier path segment. The example at the lower right
shows a "C" command followed by an "S" command.

View this example as SVG (SVG-enabled browsers only)

9.3.7. The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

Command Name Parameters Description

Q
(absolute)
q (relative)

quadratic Bézier
curveto

(x1 y1 x y)+

Draws a quadratic Bézier curve
from the current point to (x,y)
using (x1,y1) as the control
point. Q (uppercase) indicates
that absolute coordinates will
follow; q (lowercase) indicates
that relative coordinates will
follow. Multiple sets of
coordinates may be specified to
draw a polybézier. At the end of
the command, the new current
point becomes the final (x,y)
coordinate pair used in the
polybézier.

T
(absolute)
t (relative)

Shorthand/smooth
quadratic Bézier
curveto

(x y)+

Draws a quadratic Bézier curve
from the current point to (x,y).
The control point is assumed to
be the reflection of the control
point on the previous command
relative to the current point. (If
there is no previous command

or if the previous command was
not a Q, q, T or t, assume the
control point is coincident with
the current point.) T
(uppercase) indicates that
absolute coordinates will follow;
t (lowercase) indicates that
relative coordinates will follow.
At the end of the command, the
new current point becomes the
final (x,y) coordinate pair used
in the polybézier.

When a relative q or t command is used, each of the relative coordinate pairs
is computed as for those in an m command. For example, the final control
point of the curve of both commands is (cpx + x, cpy + y).

Example quad01 shows some simple uses of quadratic Bézier commands
within a path. Note that the control point for the "T" command is computed
automatically as the reflection of the control point for the previous "Q"
command relative to the start point of the "T" command.

<?xml version="1.0" standalone="no"?>
<svg width="12cm" height="6cm" viewBox="0 0 1200 600"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <title>Example quad01 - quadratic Bézier commands in path data</title>
 <desc>Picture showing a "Q" a "T" command,
 along with annotations showing the control points
 and end points</desc>
 <rect x="1" y="1" width="1198" height="598"
 fill="none" stroke="blue" stroke-width="1" />

 <path d="M200,300 Q400,50 600,300 T1000,300"
 fill="none" stroke="red" stroke-width="5" />
 <!-- End points -->
 <g fill="black" >
 <circle cx="200" cy="300" r="10"/>
 <circle cx="600" cy="300" r="10"/>
 <circle cx="1000" cy="300" r="10"/>
 </g>
 <!-- Control points and lines from end points to control points -->
 <g fill="#888888" >
 <circle cx="400" cy="50" r="10"/>
 <circle cx="800" cy="550" r="10"/>
 </g>
 <path d="M200,300 L400,50 L600,300
 L800,550 L1000,300"
 fill="none" stroke="#888888" stroke-width="2" />
</svg>

Example quad01

View this example as SVG (SVG-enabled browsers only)

9.3.8. The elliptical arc curve commands

SVG 2
Requirement: Make it simpler to draw arcs in SVG path syntax.

Resolution: Make arcs in paths easier.

Purpose: To make it easier for authors to write path data with
arcs by hand.

Owner: Cameron (ACTION-3151)

The elliptical arc commands are as follows:

Command Name Parameters Description

A
(absolute)
a (relative)

elliptical
arc

(rx ry x-axis-
rotation large-
arc-flag
sweep-flag x
y)+

Draws an elliptical arc from the current
point to (x, y). The size and orientation
of the ellipse are defined by two radii
(rx, ry) and an x-axis-rotation, which
indicates how the ellipse as a whole is
rotated, in degrees, relative to the
current coordinate system. The center
(cx, cy) of the ellipse is calculated
automatically to satisfy the constraints
imposed by the other parameters.
large-arc-flag and sweep-flag
contribute to the automatic calculations
and help determine how the arc is
drawn.

When a relative a command is used, the end point of the arc is (cpx + x, cpy
+ y).

Example arcs01 shows some simple uses of arc commands within a path.

<?xml version="1.0" standalone="no"?>

<svg width="12cm" height="5.25cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <title>Example arcs01 - arc commands in path data</title>
 <desc>Picture of a pie chart with two pie wedges and
 a picture of a line with arc blips</desc>
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="1" />

 <path d="M300,200 h-150 a150,150 0 1,0 150,-150 z"
 fill="red" stroke="blue" stroke-width="5" />
 <path d="M275,175 v-150 a150,150 0 0,0 -150,150 z"
 fill="yellow" stroke="blue" stroke-width="5" />

 <path d="M600,350 l 50,-25
 a25,25 -30 0,1 50,-25 l 50,-25
 a25,50 -30 0,1 50,-25 l 50,-25
 a25,75 -30 0,1 50,-25 l 50,-25
 a25,100 -30 0,1 50,-25 l 50,-25"
 fill="none" stroke="red" stroke-width="5" />
</svg>

Example arcs01

View this example as SVG (SVG-enabled browsers only)

The elliptical arc command draws a section of an ellipse which must meet the
following constraints:

the arc starts at the current point
the arc ends at point (x, y)
the ellipse has the two radii (rx, ry)
the x-axis of the ellipse is rotated by x-axis-rotation degrees relative to
the x-axis of the current coordinate system.

For most situations, there are actually four different arcs (two different
ellipses, each with two different arc sweeps) that satisfy these constraints.
large-arc-flag and sweep-flag indicate which one of the four arcs are
drawn, as follows:

Of the four candidate arc sweeps, two will represent an arc sweep of
greater than or equal to 180 degrees (the "large-arc"), and two will
represent an arc sweep of less than or equal to 180 degrees (the "small-
arc"). If large-arc-flag is '1', then one of the two larger arc sweeps will
be chosen; otherwise, if large-arc-flag is '0', one of the smaller arc
sweeps will be chosen,

If sweep-flag is '1', then the arc will be drawn in a "positive-angle"
direction (i.e., the ellipse formula x=cx+rx*cos(theta) and
y=cy+ry*sin(theta) is evaluated such that theta starts at an angle
corresponding to the current point and increases positively until the arc
reaches (x,y)). A value of 0 causes the arc to be drawn in a "negative-
angle" direction (i.e., theta starts at an angle value corresponding to the
current point and decreases until the arc reaches (x,y)).

The following illustrates the four combinations of large-arc-flag and sweep-
flag and the four different arcs that will be drawn based on the values of
these flags. For each case, the following path data command was used:

<path d="M 125,75 a100,50 0 ?,? 100,50"
 style="fill:none; stroke:red; stroke-width:6"/>

where "?,?" is replaced by "0,0" "0,1" "1,0" and "1,1" to generate the four
possible cases.

View this example as SVG (SVG-enabled browsers only)

Refer to the section on Out-of-range elliptical arc parameters for detailed
implementation notes for the path data elliptical arc commands.

The Implementation Notes appendix has relevant formulae for software that
needs to convert SVG arc notation to a format that uses center points and arc
sweeps.

9.3.9. The grammar for path data

SVG path data matches the following EBNF grammar.

svg_path::= wsp* moveto? (moveto drawto_command*)?

drawto_command::=
 moveto
 | closepath
 | lineto
 | horizontal_lineto
 | vertical_lineto
 | curveto
 | smooth_curveto
 | quadratic_bezier_curveto
 | smooth_quadratic_bezier_curveto

 | elliptical_arc

moveto::=
 ("M" | "m") wsp* coordinate_pair_sequence

closepath::=
 ("Z" | "z")

lineto::=
 ("L"|"l") wsp* coordinate_pair_sequence

horizontal_lineto::=
 ("H"|"h") wsp* coordinate_sequence

vertical_lineto::=
 ("V"|"v") wsp* coordinate_sequence

curveto::=
 ("C"|"c") wsp* curveto_coordinate_sequence

curveto_coordinate_sequence::=
 coordinate_pair_triplet
 | (coordinate_pair_triplet comma_wsp? curveto_coordinate_sequence)

smooth_curveto::=
 ("S"|"s") wsp* smooth_curveto_coordinate_sequence

smooth_curveto_coordinate_sequence::=
 coordinate_pair_double
 | (coordinate_pair_double comma_wsp? smooth_curveto_coordinate_sequence)

quadratic_bezier_curveto::=
 ("Q"|"q") wsp* quadratic_bezier_curveto_coordinate_sequence

quadratic_bezier_curveto_coordinate_sequence::=
 coordinate_pair_double
 | (coordinate_pair_double comma_wsp? quadratic_bezier_curveto_coordinate_sequence)

smooth_quadratic_bezier_curveto::=
 ("T"|"t") wsp* coordinate_pair_sequence

elliptical_arc::=
 ("A" | "a") wsp* elliptical_arc_argument_sequence

elliptical_arc_argument_sequence::=
 elliptical_arc_argument
 | (elliptical_arc_argument comma_wsp? elliptical_arc_argument_sequence)

elliptical_arc_argument::=
 number comma_wsp? number comma_wsp? number comma_wsp
 flag comma_wsp? flag comma_wsp? coordinate_pair

coordinate_pair_double::=
 coordinate_pair comma_wsp? coordinate_pair

coordinate_pair_triplet::=
 coordinate_pair comma_wsp? coordinate_pair comma_wsp? coordinate_pair

coordinate_pair_sequence::=
 coordinate_pair | (coordinate_pair comma_wsp? coordinate_pair_sequence)

coordinate_sequence::=
 coordinate | (coordinate comma_wsp? coordinate_sequence)

coordinate_pair::= coordinate comma_wsp? coordinate

coordinate::= sign? number

sign::= "+"|"-"
number ::= ([0-9])+
flag::=("0"|"1")
comma_wsp::=(wsp+ ","? wsp*) | ("," wsp*)
wsp ::= (#x9 | #x20 | #xA | #xC | #xD)

The processing of the EBNF must consume as much of a given EBNF
production as possible, stopping at the point when a character is
encountered which no longer satisfies the production. Thus, in the string "M
100-200", the first coordinate for the "moveto" consumes the characters
"100" and stops upon encountering the minus sign because the minus sign
cannot follow a digit in the production of a "coordinate". The result is that
the first coordinate will be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto"
consumes the characters "0.6" and stops upon encountering the second
decimal point because the production of a "coordinate" only allows one
decimal point. The result is that the first coordinate will be "0.6" and the
second coordinate will be ".5".

Note that the EBNF allows the path data string in the d property to be empty.
This is not an error, instead it disables rendering of the path. Rendering is
also disabled when the d property has the value none.

If path data not matching the grammar is encountered, then the path data is
in error (see Error Handling).

9.4. Path directionality

Some features, such as the orientation of markers and the shapes of line
caps, are defined in terms of the direction of the path at a given distance
along the path or at the start or end of an individual segment.

The direction of a path at a specified distance along the path is defined as
follows:

If the given distance is zero, then the direction of the path is the
direction at the start of the path's first segment.
Otherwise, if the given distance is the length of the path, then the
direction of the path is the direction at the end of the path's last
segment.
Otherwise, if the given distance along the path occurs at a path segment
boundary, then the direction of the path is the direction at the start of
the segment at the given distance, considering each segment to be
endpoint exclusive.
This will "move past" zero length segments, and choose the later
segment if the distance is at the boundary between two non-zero length
segments.

The default direction at segment boundaries is overriden when
calculating a cap shape and when rendering markers.
Otherwise, the given distance along the path occurs in the middle of a
non-zero length path segment. The direction is simply the direction of
the curve at that point. If the point lies at a discontinuity, such as a cusp
in a Bézier segment, then the direction is undefined; in this case, a
direction between the incoming and outgoing direction around the
discontinuity should be used.

The direction at the start of a path segment is defined as follows:

If length of the entire path the segment belongs to is zero, then the
direction at the start of the segment points in the same direction as the
positive x-axis.
Otherwise, if the path segment is zero length and the segment does not
have any preceding non-zero length segments, then the direction at the
start of the segment is the same as the direction at the end of the
segment.
Otherwise, if the path segment is zero length and there is some non-zero
length segment preceding this segment, then the direction at the start
of this segment is the same as the direction at the end of the closest
preceding non-zero length segment.
Otherwise, the path segment is non-zero length. The direction at the
start of the segment is simply the direction coming out of the segment's
start point.

The direction at the end of a path segment is defined as follows:

If length of the entire path the segment belongs to is zero, then the
direction at the end of the segment points in the same direction as the
positive x-axis.
Otherwise, if the path segment is zero length and the segment does not
have any following non-zero length segments, then the direction at the
end of the segment is the same as the direction at the start of the
segment.
Otherwise, if the path segment is zero length and there is some non-zero
length segment following this segment, then the direction at the end of
this segment is the same as the direction at the start of the closest
following non-zero length segment.
Otherwise, the path segment is non-zero length. The direction at the end
of the segment is simply the direction coming in to the segment's end
point.

9.5. Implementation notes

A conforming SVG user agent must implement features that use path data
according to the following details:

9.5.1. Out-of-range elliptical arc parameters

Arbitrary numerical values are permitted for all elliptical arc parameters
(other than the boolean flags), but user agents must make the following
adjustments for invalid values when rendering curves or calculating their
geometry:

If the endpoint (x, y) of the segment is identical to the current point
(e.g., the endpoint of the previous segment), then this is equivalent to
omitting the elliptical arc segment entirely.

If either rx or ry is 0, then this arc is treated as a straight line segment
(a "lineto") joining the endpoints.

If either rx or ry have negative signs, these are dropped; the absolute
value is used instead.

If rx, ry and x-axis-rotation are such that there is no solution (basically,
the ellipse is not big enough to reach from the current point to the new
endpoint) then the ellipse is scaled up uniformly until there is exactly
one solution (until the ellipse is just big enough).

See the appendix section Correction of out-of-range radii for
mathematical formula for this scaling operation.

This forgiving yet consistent treatment of out-of-range values ensures that:

The inevitable approximations arising from computer arithmetic cannot
cause a valid set of values written by one SVG implementation to be
treated as invalid when read by another SVG implementation. This
would otherwise be a problem for common boundary cases such as a
semicircular arc.
Continuous animations that cause parameters to pass through invalid
values are not a problem. The motion remains continuous.

9.5.2. Reflected control points

The S/s and T/t commands indicate that the first control point of the given
cubic Bézier segment is calculated by reflecting the previous path segment's
final control point relative to the current point. The exact math is as follows.

If the current point is (curx, cury) and the final control point of the previous
path segment is (oldx2, oldy2), then the reflected point (i.e., (newx1, newy1),
the first control point of the current path segment) is:

(newx1, newy1) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
 = (2*curx - oldx2, 2*cury - oldy2)

9.5.3. Zero-length path segments

Path segments with zero length are not invalid, and will affect rendering in
the following cases:

If markers are specified, then a marker is drawn on every applicable

vertex, even if the given vertex is the end point of a zero-length path
segment and even if "moveto" commands follow each other.
As mentioned in Stroke Properties, linecaps must be painted for zero-
length subpaths when stroke-linecap has a value of round or square.

9.5.4. Error handling in path data

Unrecognized contents within a path data stream (i.e., contents that are not
part of the path data grammar) is an error. In such a case, the following
error-handling rules must be used:

The general rule for error handling in path data is that the SVG user
agent shall render a ‘path’ element up to (but not including) the path
command containing the first error in the path data specification. This
will provide a visual clue to the user or developer about where the error
might be in the path data specification. This rule will greatly discourage
generation of invalid SVG path data.
If a path data command contains an incorrect set of parameters, then
the given path data command is rendered up to and including the last
correctly defined path segment, even if that path segment is a sub-
component of a compound path data command, such as a "lineto" with
several pairs of coordinates. For example, for the path data string 'M
10,10 L 20,20,30', there is an odd number of parameters for the "L"
command, which requires an even number of parameters. The user
agent is required to draw the line from (10,10) to (20,20) and then
perform error reporting since 'L 20 20' is the last correctly defined
segment of the path data specification.
Wherever possible, all SVG user agents shall report all errors to the
user.

9.6. Distance along a path

Various operations, including text on a path and motion animation and
various stroke operations, require that the user agent compute the distance
along the geometry of a graphics element, such as a ‘path’.

Exact mathematics exist for computing distance along a path, but the
formulas are highly complex and require substantial computation. It is
recommended that authoring products and user agents employ algorithms
that produce as precise results as possible; however, to accommodate
implementation differences and to help distance calculations produce results
that approximate author intent, the ‘pathLength’ attribute can be used to
provide the author's computation of the total length of the path so that the
user agent can scale distance-along-a-path computations by the ratio of
‘pathLength’ to the user agent's own computed value for total path length.

A "moveto" operation within a ‘path’ element is defined to have zero length.
Only the various "lineto", "curveto" and "arcto" commands contribute to path
length calculations.

9.6.1. The ‘pathLength’ attribute

Name Value Initial value Animatable
pathLength <number> (none) yes

The author's computation of the total length of the path, in user units.
This value is used to calibrate the user agent's own distance-along-
a-path calculations with that of the author. The user agent will scale all
distance-along-a-path computations by the ratio of ‘pathLength’ to the
user agent's own computed value for total path length. ‘pathLength’
potentially affects calculations for text on a path, motion animation and
various stroke operations.

A value of zero is valid and must be treated as a scaling factor of infinity.
A value of zero scaled infinitely must remain zero, while any non-
percentage value greater than zero must become +Infinity.

A negative value is an error (see Error handling).

‘pathLength’ has no effect on percentage distance-along-a-path
calculations.

9.7. DOM interfaces

9.7.1. Interface SVGPathElement

An SVGPathElement object represents a ‘path’ in the DOM.

[Exposed=Window]
interface SVGPathElement : SVGGeometryElement {
};

